

Randomization Tests of Causal Effects Under General Interference

David Puelz joint with Panos Toulis

March 4, 2019

1

Experiment and data

Units and treatment assignment

- 37,055 total streets (units)
- o 967 streets are identified as crime "hotspots"
- $\circ~$ 384 are treated with increased police presence

Access to randomizations based on the design, pr(Z)

Experiment and data

Units and treatment assignment

- 37,055 total streets (units)
- 967 streets are identified as crime "hotspots"
- \circ 384 are treated with increased police presence

Outcomes and covariates

- Crime counts on all streets (murders, car and motorbike thefts, personal robberies, assaults)
- Survey data on hotspot streets
- Characteristics of hotspots (distance from school, bus stop, rec center, church, neighborhood, ...)

Access to randomizations based on the design, pr(Z)

đ

How does the intervention affect crime?

- $\rightarrow \text{direct effect?}$
- \rightarrow spillovers to adjacent streets?

How does the intervention affect crime?

- $\rightarrow \text{direct effect?}$
- \rightarrow spillovers to adjacent streets?

We will answer these through hypothesis testing.

We would like to be $\underline{model-free}$, so we will use the randomization method of inference.

A classical test

Define potential outcome of unit *i* under assignment *Z*: $Y_i(Z)$ i.e., number of thefts over measurement interval. Y = vector of observed outcomes.

Assume: $Y_i(Z)$ depends only on Z_i (no interference) $H_0: Y_i(Z_i = 0) = Y_i(Z_i = 1)$ for every *i*.

We can use a Fisher exact test here!

Fisher exact test (1935)

$$\mathbf{H_0}: \quad Y_i(Z_i=0)=Y_i(Z_i=1) \text{ for every } i.$$

The procedure:

Choose test statistic T = T(y, z) (e.g., difference in means).

1.
$$T_{obs} = T(Y, Z)$$
.

2. Sample
$$Z' \sim \operatorname{pr}(Z')$$
, store $T_r = T(Y', Z') \stackrel{H_0}{=} T(Y, Z')$.

3. p-value =
$$\mathbb{E} \left[\mathbb{1} \{ T_r \geq T_{obs} \} \right]$$
.

Fisher exact test (1935)

$$\mathbf{H_0}: \quad Y_i(Z_i=0)=Y_i(Z_i=1) \text{ for every } i.$$

The procedure:

Choose test statistic T = T(y, z) (e.g., difference in means).

1.
$$T_{obs} = T(Y, Z)$$
.
2. Sample $Z' \sim pr(Z')$, store $T_r = T(Y', Z') \stackrel{H_0}{=} T(Y, Z')$.
3. p-value = $\mathbb{E} [\mathbb{1} \{ T_r \geq T_{obs} \}]$.

Proof of validity:

$$T(Y', Z') \stackrel{H_0}{=} T(Y, Z') \stackrel{d}{=} T(Y, Z)$$

" $T_{\rm obs} \sim T_r$ (under null)"

Why is this great?

• Fisher test is exact.

 \circ No model for Y.

• Valid in finite samples.

• Robustness since it is a rank test (the same cannot be said for regression).

The original assumption ...

Assume: $Y_i(Z)$ depends only on Z_i (no interference) \rightarrow not very realistic for our application.

In reality, $Y_i(Z)$ is exposed to (depends on) multiple parts of Z.

The original assumption ...

Assume: $Y_i(Z)$ depends only on Z_i (no interference) \rightarrow not very realistic for our application.

In reality, $Y_i(Z)$ is exposed to (depends on) multiple parts of Z.

New question that assumes interference: Is there a difference in outcome between short-range and pure control streets?

Answering this question under interference

0

Let's suppose, for a given Z, unit *i*'s **exposure** lives in the set {short-range, pure control, neither} = $\{a, b, c\} = \mathcal{E}$.

Unit *i*'s exposure function, $f_i : \{0,1\}^N \to \mathcal{E}$. Maps Z to exposure.

Now, assume: $Y_i(Z)$ depends only on $f_i(Z)$. We want to test:

$$H_0$$
: $Y_i(a) = Y_i(b)$ for every *i*.

Can we just use a Fisher exact test again?

Not quite ...

Recall, observed $T \sim$ randomized T for things to work:

$$T(Y',Z') \stackrel{h_0}{=} T(Y,Z') \stackrel{d}{=} T(Y,Z)$$

The null only assumes 2 of the 3 exposures have equal outcomes $H_0: Y_i(a) = Y_i(b) \stackrel{?}{=} Y_i(c)$ for every i

In this case, the null is not sharp. We cannot impute potential outcomes Y' freely under any Z'.

Existing approaches and our contribution

We need to find units only exposed to *a* or *b* under some set of assignments ... called **focal units**.

 \rightarrow make **H**₀ conditionally sharp (so that $Y' \stackrel{H_0}{=} Y$)

Aronow 2012, Athey et al. 2017 – Sample focals, enumerate Z o computational challenges Basse et al. 2018 – Conditioning mechanisms o conditioning difficult to execute easier when interference has structure (e.g. two-stage designs). Existing approaches and our contribution

We need to find units only exposed to *a* or *b* under some set of assignments ... called **focal units**.

→ make H_0 conditionally sharp (so that $Y' \stackrel{H_0}{=} Y$) Aronow 2012, Athey et al. 2017 – Sample focals, enumerate Z \circ computational challenges Basse et al. 2018 – Conditioning mechanisms \circ conditioning difficult to execute easier when interference has structure (e.g. two-stage designs).

Our contribution: A <u>constructive</u>, general approach to find focal units and assignments to make the null sharp.

Revisiting the null based on exposure functions

$$\mathsf{H}_{\mathbf{0}}: Y_i(Z) = Y_i(Z') ext{ for every } i, Z, Z',$$

such that $f_i(Z), f_i(Z') \in \{a, b\}.$

$$Y_i(Z)$$
 – potential outcome for street *i*.
 Z, Z' – assignment vectors $\in \{0, 1\}^N$.
 f_i – deterministic exposure function (takes in Z , outputs exposure).
 $\{a, b\}$ – set of possible exposures for units (\subseteq range(f_i) = \mathcal{E}).

Testing $Y_i(a) = Y_i(b) \forall i$

Given a null hypothesis and assignment from pr(Z), we know which units are exposed to either *a* or *b* using $f_i(\cdot)$.

This is a binary relationship! How can we visualize?

assignment *j*.

Introducing the null exposure graph

Within a biclique, every unit is exposed to $\{a, b\}$ under any assignment.

i.e.: If Z_{obs} is in biclique, we can impute potential outcomes, and H_0 is sharp in the biclique.

Let's outline the method ...

Conditional biclique method

Ö

- \rightarrow A null exposure graph uniquely defined given $H_{0}.$
- \rightarrow A test statistic T = T(y, z).

- 1. **Decompose:** Compute biclique decomposition of null exposure graph. Pick out biclique with Z_{obs} , call it C.
- 2. **Condition:** Compute test statistic values with units and assignments only in *C*.
- 3. Summarize: p-value = $\mathbb{E}_{Z_C} [\mathbb{1}\{T_C \ge T_{obs}\}]$. Here, $P(Z_C) \propto pr(Z_C)\mathbb{1}\{Z_C \in C\}$

Why is this a valid method?

Clique test statistics: $T_C = T(Y_C, Z_C)$

*T is defined only in C by **condition** step in method

For every
$$Z, Z'$$
, we need to show $T(Y', Z') \stackrel{d}{=} T(Y, Z) \mid C$

Proof:

$$T(Y',Z') \stackrel{*}{=} T(Y'_C,Z'_C) \stackrel{H_0}{=} T(Y_C,Z'_C) \stackrel{d}{=} T(Y_C,Z_C) \stackrel{*}{=} T(Y,Z)$$

 $\circ\,$ Finding bicliques is hard, actually, $NP\text{-}hard^1$

 The method is constructive, still needs to be optimized i.e., different biclique decompositions will have different power properties, but all are valid!

¹We use Binary Inclusion-Maximal Biclustering Algorithm, which uses a divide and conquer method to find bicliques.

Example: Is there a short-range spillover effect?

$$\mathsf{H}_{\mathbf{0}}: Y_i(Z) = Y_i(Z') ext{ for every } i, Z, Z',$$

such that $f_i(Z), f_i(Z') \in \{a, b\}.$

$$f_i(Z) := \begin{cases} \text{short-range} & Z_i = 0, \text{dist}_i < 125\text{m} \\ \text{control} & Z_i = 0, \text{dist}_i > 500\text{m} \\ \text{neither} & \text{else} \end{cases}$$
$$\{a, b\} := \{ \text{short-range}, \text{ control} \} \\ \text{dist}_i := \text{distance to closest treated street.} \end{cases}$$

Returning to the map

The observed assignment

The observed assignment

We can remake these pictures for every assignment Z drawn from pr(Z) ...

We can remake these pictures for every assignment Z drawn from $\operatorname{pr}(Z)$...

 \rightarrow The output is our null exposure graph!

Null exposure graph

navy, light blue, and white						
assignments						

units

29

Biclique containing the observed assignment

only navy and light blue!

assignments

focal units

A test of the null

 New method is presented for testing causal effects under general interference using null exposure graphs and bicliques.

• Structure is placed on null hypothesis through exposure functions.

 More interesting work to be done to improve the method and test interesting hypotheses!